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Abstract

Measure transport provides a useful tool for characterizing multivariate non-
Gaussian target distributions arising in Bayesian inference. The transport approach
seeks a parametric map that pushes forward a chosen reference distribution to the
target/posterior distribution, through minimization of a certain Kullback–Leibler
divergence. Among the distinguishing features of this approach is the availability
of a tractable error estimator for posterior approximation, along with the idea
that transport can be cast as an infinite-dimensional optimization problem whose
variations can be evaluated in closed form. We use these ingredients to develop a
method for adaptively constructing transport maps—balancing the complexity of
the map representation, approximation error, and computational cost.

1 Statistical inference as a measure transportation problem

The solution of many statistical inference problems requires the evaluation of integrals I[f ] :=∫
f(x)P (dx) with respect to complex distributions P . These distributions occur, for example, as

posteriors resulting from the application of Bayes’ rule. A key challenge in this context is the creation
of effective quadrature schemes for arbitrary posterior distributions. Here we use the term “quadrature”
broadly to include Monte Carlo, quasi-Monte Carlo (QMC), and a variety of structured (e.g., sparse
grid) numerical integration schemes.

We will frame this problem in the context of transportation of measures. Given the sample space Rd
and the Borel σ-algebra σ(Rd), let R : σ(Rd)→ R be a tractable distribution,1 called the reference,
and let P : σ(Rd)→ R be the intractable distribution of interest, called the target. The transportation
problem consists in finding the measurable map T : Rd → Rd such that R(A) = P (T (A)) for any
A ∈ σ(Rd); in other words, T pushes forward R to P , which we write as T]R = P . In the classical
treatments of optimal transportation by Monge and later Kantorovich [1, 2], the map is required
to minimize a cost that reflects transportation effort. Such a cost is not intrinsic to most Bayesian
inference problems, however, and thus our solution of the transportation problem will not be required
to fulfill this optimality condition. Rather than seeking optimal maps, we will seek maps that satisfy
the coupling condition T]R = P along with certain additional structure discussed in Section 2.

In the context of statistical inference, explicit availability of a transport map allows the accurate
and cheap evaluation of integrals with respect to P , by noting that I[f ] =

∫
f(x)P (dx) =

∫
f ◦

T (x)R(dx). Furthermore, if (xk,wk)qk=1 is a quadrature rule for R, then (T (xk),wk)qk=1 is a
quadrature rule for P that can be used to approximate I[f ]. Figures 1a and 1b illustrate the notions of
transforming quadratures and mapping between distributions.

1Here tractability refers to the ready availability of quadrature rules for R. A quadrature rule is a collection
of points and weights defining the approximation

∫
gR(dx) ≈

∑
g(xk)wk. Here we restrict our attention to

R = N (0, I), but we stress the fact that R is a degree of freedom.
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(a) Monte Carlo sampling (b) Sparse grid quadrature (c) Density transformation

Figure 1: Using measure transport to characterize intractable distributions. Figures (a) and (b) show
the mapping of Monte Carlo points and a sparse grid rule, respectively, from a standard Gaussian
distribution to a complex target. Figure (c) shows the associated density transformations: pushing
forward the reference (3) and pulling back the target (4).

2 Construction of transport maps

In order to make the identification of a transport T computationally tractable, we will restrict
our attention to the set T4 of lower triangular monotone increasing maps, known as the Knothe–
Rosenblatt rearrangements [3, 4]. While this restriction greatly reduces the size of the search space
for T , it does not rule out the existence of a solution. In fact, for any two absolutely continuous
measures R and P , there exists a unique T ∈ T4 such that R(A) = P (T (A)) for any A ∈ σ(Rd).
Maps in T4 take the form

T (x) =


T1(x1)
T2(x1, x2)

...
Td(x1, . . . , xd)

 , (1)

and satisfy a monotonicity condition corresponding to ∂iTi > 0, i = 1 . . . d. This condition can be
enforced by setting

Ti(x1, . . . , xi) = ci(x1, . . . , xi−1) +

∫ xi

0

exp(hi(x1, . . . , xi−1, t))dt , (2)

for functions ci : Ri−1 → R and hi : Ri → R [5, 6].

As it is common in statistical inference, we will assume that R and P are absolutely continuous with
respect to the Lebesgue measure and denote their densities by ρ and π. This implies that finding
a map T that pushes forward R to P corresponds to satisfying T]ρ = π almost everywhere (or
equivalently ρ = T ]π a.e.), where

T]ρ(x) :=ρ ◦ T−1(x) det(∇T−1(x)) and (3)

T ]π(x) :=π ◦ T (x) det(∇T (x)) , (4)

are the pushforward of ρ through T and the pullback of π through T , respectively.2

The problem is then formalized as a minimization problem in terms of the Kullback-Leibler divergence
from π to T]ρ [7, 8]:

T ? = arg min
T∈T4

DKL(T]ρ‖π) . (5)

2For convenience, we apply the pushforward and pullback notations to both measures and densities.
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In practice the map T needs to be parameterized. We will denote a finite-dimensional parameterization
by T [a] for some coefficients a ∈ Rn. In the same fashion we will denote the parameterizations
of Ti, ci, and hi by Ti[ai], ci[aci ], and hi[ahi ], respectively. This parameterization will define the
n-dimensional subspace T n4 ⊂ T4 and lead to the minimization problem:

a?n = arg min
a∈Rn

DKL(T [a]]ρ‖π) . (6)

Problem (6) is a stochastic optimization problem. We solve it using a sample average approximation
approach [9]. Note that DKL(T [a]]ρ‖π) = DKL(ρ‖T [a]]π). Then the resulting expectation with
respect to R can be approximated by a Monte Carlo estimator,3 leading to the deterministic problem

a?n = arg min
a∈Rn

1

q

q∑
k=1

− log T [a]]π̄(xk)︸ ︷︷ ︸
J qn(T [a])

, (7)

for a sample (xi)
q
i=1 with xi

iid∼ R. Above, we have also replaced the target density π with its
(potentially) unnormalized counterpart π̄, without affecting the minimizer. Problem (7) can now
be solved with any nonlinear optimization method of choice. The availability of information such
as the gradient and, optionally, the Hessian of π̄ enables the use of high-order (e.g., Newton or
quasi-Newton) optimization methods which guarantee fast convergence. Furthermore, the objective
in (7) allows for embarrassingly parallel implementations.

One very useful property of the method is that it allows for an estimation of the posterior approxima-
tion error.4 In particular, as the approximation improves, Vρ[log ρ

T ]π̄
]→ 0 at the same asymptotic

rate at which DKL(T]ρ‖π)→ DKL(T ?] ρ‖π), where T ? ∈ T4 is the global minimizer of (5). Hence,
despite the objective of (7) not being zero at optimality due to the unknown integration constant of π̄,
the variance diagnostic Vρ[log ρ

T ]π̄
] can be used to assess the quality of the approximation [7].

3 Adaptive construction of transport maps

Problem (5) is defined over the infinite-dimensional space T∆. Finding a good parameterization
for T corresponds to finding the finite-dimensional subspace T n∆ ⊂ T∆ that leads to the smallest
error (i.e., smallest KL divergence at optimality) for a given dimension n. The quality of this
subspace is dictated by the sources of low-dimensional structure in the problem. Here we develop
an adaptive strategy that leverages infinite-dimensional information to drive the enrichment of the
map parameterization, focusing on the smoothness and marginal independence properties of π. Other
sources of low dimensionality, such as conditional independence and low-rank structure, are analyzed
in [10].

We first note that if π encodes some degree of marginal independence between components of X, the
parameterization of a map component Ti in (1) will involve only a subset of its inputs. In particular,
let X ∼ P and (A,B) be a partition of {1, . . . , i}. If Xi ⊥⊥ XB for every i ∈ A, then Ti is a
|A|–dimensional function of the variables xA. This property suggests that one could start with a very
sparse approximation of T (e.g., diagonal) and enrich it through the following adaptive procedure.

Let us consider problem (7) of finding a?n such that T [a?n] ∈ T n4 ⊂ T4 minimizes J qn (T [a]). For
simplicity, we consider only target distributions P with finite variance and therefore restrict our
attention to square integrable maps, i.e., T4 ⊂ H := L2

ρ and T n4 ⊂ Hn ⊂ H, where Hn is an
n-dimensional subspace of the Hilbert space H. We know that, at optimality, ∇aJ qn (T [a?n]) = 0.
However the gradient identifying the first variation5 of J qn (T [a?n]),

∇J qn (T [a?n]) = (∇xT )
−1
(
∇x log

ρ

T ]π̄

)
, (8)

3One could instead approximate this expectation with QMC, sparse grid quadrature, or any other scheme.
4This is a non-trivial task in Bayesian inference, due to the unavailability of the integration constant of π.
5Recall that in the Hilbert space H, the first variation given by δJ q

n (T [a
?
n])(R) =

limε→0
J qn(T [a?n]+εR)−J qn(T [a?n])

ε
is identified by the vector ∇J q

n (T [a
?
n]) ∈ H such that δJ q

n (T [a
?
n])(R) =

〈∇J q
n (T [a

?
n]), R〉. The Riesz representation theorem guarantees that this vector exists and is unique.
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Conditionals along coordinate axes

(a) Iteration 13 - T ]π
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(b) Iteration 13 -∇xT

Figure 2: Quality (left) and sparsity pattern (right) of the adaptively constructed transport map for the
stochastic volatility problem, after 13 iterations.

is itself a map that will be different from zero, unless T [a?n] represents a global optimum in the
infinite-dimensional space T4. This gradient can be evaluated in closed form (8), and identifies a
direction in H such that there exists an ε-neighborhood where the objective can be improved, i.e.,
J qn (T [a?n] + ε∇J qn (T [a?n])) < J qn (T [a?n]). Since∇J qn (T [a?n]) ∈ H is a map, we can approximate
it by

a?m = arg min
a∈Rm

‖∇J qn (T [a?n])− U [a]‖2L2
ρ
, (9)

where U [a] ∈ Hm andHn ⊂ Hm. Analyzing the magnitude of the coefficients a, we can develop a
heuristic to choose the new parameterization coefficients to be used in the new approximation space
T l4, with n ≤ l ≤ m. Note that if we approximate the L2

ρ norm in (9) using the same quadrature rule
used to evaluate (6), no additional evaluation of π is required for the computation of the gradient (8).

This adaptive procedure is terminated when the variance diagnostic Vρ[log ρ / T [a?l ]
]π̄] reaches

a user-defined tolerance. If the approximation is not satisfactory, exact samples from the target
distribution can be drawn by applying importance sampling or MCMC [11] to the more amenable
“Gaussianized” density T [a?n]]π̄ ≈ ρ [12, 13].

4 Numerical example

We are currently applying the adaptive map construction to a range of inference problems; here
we show a simple example. Consider inference of the time-dependent volatility of an asset, given
observations of its return at certain times. We use [14] an auto-regressive AR(1) process to model the
log-volatility Xt of the asset at time t:

Xt+1 = µ+ φ(Xt − µ) + ηt , ηt ∼ N (0, 1) , X1 ∼ N
(
0, 1/

(
1− φ2

))
, (10)

where the hyperparameters µ and φ are endowed with priors µ ∼ N (0, σ2
µ) and φ+1

2 ∼ Beta(10, 1).
The observed return Yt follows the price evolution model suggested by Black and Scholes [15]:

Yt = εt exp(Xt/2) , εt ∼ N (0, 1) . (11)

We characterize the full Bayesian posterior π ∼ µ, φ,X1:N |Y1:N of the parameters and states up to
time N = 30. To illustrate the capability of the method, Figure 2a shows slices (i.e., two-dimensional
conditionals) of the pullback density T [a?]]π at the 13th step of the adaptation scheme. Since
T [a?]]π ≈ ρ, these slices should resemble those of the standard Gaussian density if the map is
accurate. Figure 2b shows the magnitudes of elements of∇xT [a?] at the same step, suggesting the
sparsity pattern of T [a?]. The number of coefficients identified by the adaptive scheme at step 13 is
≈ 700. The variance diagnostic Vρ

[
log ρ/T [a?]]π̄

]
is steadily decreased via the adaptive procedure,

improving by one order of magnitude overall and suggesting a good overall agreement between
T [a?]]π and ρ. Additional results are shown in Appendix A.
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A Additional numerical results for the example in Section 4

Conditionals along coordinate axes
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Figure 3: Quality (left) and sparsity pattern (right) of the initial transport map used to start the
adaptive procedure for the stochastic volatility problem. The initial map is chosen to be diagonal.
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Figure 4: Decay of the variance diagnostic Vρ
[
log ρ

T [a?n]]π̄

]
as coefficients are adaptively added

and/or removed from the approximation T [a]. The removal of coefficients is driven by an estimate of
their sensitivities to the sample used for the Monte Carlo approximation in (7). For comparison, the
variance diagnostic associated with the Laplace approximation of the posterior is approximately 10.
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