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Abstract: Integration against an intractable probability measure is among the fun-
damental challenges of statistical inference, particularly in the Bayesian setting. A
principled approach to this problem seeks a deterministic coupling of the measure
of interest with a tractable “reference” measure (e.g., a standard Gaussian). This
coupling is induced by a transport map, and enables direct simulation from the de-
sired measure simply by evaluating the transport map at samples from the reference.
Yet characterizing such a map—e.g., representing and evaluating it—grows challeng-
ing in high dimensions. The central contribution of this paper is to establish a link
between the Markov properties of the target measure and the existence of certain low-
dimensional couplings, induced by transport maps that are sparse or decomposable.
Our analysis not only facilitates the construction of couplings in high-dimensional
settings, but also suggests new inference methodologies. For instance, in the context
of nonlinear and non-Gaussian state space models, we describe new variational algo-
rithms for online filtering, smoothing, and parameter estimation. These algorithms
implicitly characterize—via a transport map—the full posterior distribution of the
sequential inference problem using local operations only incrementally more complex
than regular filtering, while avoiding importance sampling or resampling.

Keywords and phrases: transport map, rearrangement, Bayesian inference, varia-
tional inference, graphical model, Markov random field, sparsity, Kalman recursions,
filtering, smoothing, joint parameter-state estimation, state-space model.
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State-space model with hyperparameters

Zk+1 = G(Zk,wk,Θ) , wk ∼ νwk
(Θ) , k ∈ Λ = {0, . . . , n}

Yk = H(Zk,vk,Θ) , vk ∼ νvk(Θ) , k ∈ Ξ ⊂ Λ

Z0 ∼ ν0(Θ) , Θ ∼ νθ

Full Bayesian solution

π (Θ,ZΛ|yΞ) ∝ L (yΞ|Θ,ZΛ)π (Θ,ZΛ)

L (yΞ|Θ,ZΛ) =
∏
k∈Ξ

L (yk|Θ,Zk)

π (Θ,ZΛ) = π (Θ)π (Z0|Θ)
∏
k∈Λ

π (Zk|Zk−1,Θ)
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Measure transport – pullbacks [PB] and pushforwards [PF]

• Distribution νρ with density ρ : Rd → R≥0

• Distribution νπ with density π : Rd → R≥0

• For T : Rd → Rd we define

PF T]ρ = ρ ◦ T−1|∇T−1|
PB T ]π = π ◦ T |∇T |

• We want T such that

PF For X ∼ νρ, T (X) ∼ νπ
PB For Y ∼ νπ, T−1(Y ) ∼ νρ
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Knothe-Rosenblatt rearrangement

For any νρ,νπ Lebesgue absolutely continuous
there exists a triangular monotone map T ∈ T> s.t.

T]ρ = π

T

T (x) =


T1(x1)
T2(x1, x2)

...
Td(x1, . . . , xd)



How to find the map T ∈ T>
such that T]ρ = π?

Daniele Bigoni – Measure Transport Framework for Online Nonlinear Filtering and Smoothing



Knothe-Rosenblatt rearrangement

For any νρ,νπ Lebesgue absolutely continuous
there exists a triangular monotone map T ∈ T> s.t.

T]ρ = π

T

T (x) =


T1(x1)
T2(x1, x2)

...
Td(x1, . . . , xd)



How to find the map T ∈ T>
such that T]ρ = π?

Daniele Bigoni – Measure Transport Framework for Online Nonlinear Filtering and Smoothing



Minimize KL-divergence to find optimal map

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel
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Minimize KL-divergence to find optimal map

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel

We are working on T n> ⊂ T>, so
how can we evaluate the quality of the approximation?
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Convergence criterion

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π̃

]
+ log

∫
π̃

Optimal T ? ∈ T> and
∫
π̃ = 1 ⇒ Eρ

[
log ρ

(T ?)]π̃

]
= 0

But, optimal T̃ ? ∈ T n> or
∫
π̃ 6= 1 ⇒ Eρ

[
log ρ

(T̃ ?)
]
π̃

]
6= 0

DKL(T]νρ‖νπ) ≈ 1
2V
[
log ρ

T ]π̃

]
as T → T ?
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Pros & cons

T ? = arg min
T∈T>

DKL(T]ρ‖π) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel

We can assess convergence!

We need to approximate d functions of up to d variables!
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log

ρ

T ]π
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Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel

We can assess convergence!

We need to approximate d functions of up to d variables!

T (x) =


T (1)(x1)
T (2)(x1, x2)

...
T (d)(x1, . . . , xd)
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Pros & cons

T ? = arg min
T∈T>

DKL(T]ρ‖π) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel

We can assess convergence!

We need to approximate d functions of up to d variables!

Sources of low-dimensional structure

• Conditional independence

• Low-rank structure

• Smoothness

• Marginal independence
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Decomposable transports
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Factorization in terms of the I-map G

For Z ∼ νπ, G = (V, E) is an I-map for νπ

if

for all A,S,B (partition, S separator), ZA⊥⊥ZB|ZS
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For Z ∼ νπ, G = (V, E) is an I-map for νπ

if

for all A,S,B (partition, S separator), ZA⊥⊥ZB|ZS
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Factorization in terms of the I-map G

If G is an I-map of νπ and νπ admits a positive continuous density π

then

π factorizes with respect to G, i.e. there exist ψC s.t.

π(z) =
1

c

∏
C∈C

ψC(zC) , c <∞
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How to remove conditional dependencies?

Removing the dependencies all at once may be too expensive!
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Remove conditional dependencies sequentially

π :
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Remove conditional dependencies sequentially

π :

π(z) =
1

c
ψA′∪S′(zA′ , zS′)ψS′∪B′(zS′ , zB′)
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Remove conditional dependencies sequentially

π :

π(z) =
1

c
ψA′∪S′(zA′ , zS′)ψS′∪B′(zS′ , zB′)

There exists T1 = L1 ◦R1 that pushes forward N (0, I) to νπ, where

L1(z) =

 LA1 (zS′ , zA′)
LS1 (zS′)
zB′

 and R1(z) =

 zA′

RS1 (zS′ , zB′)
RB1 (zS′ , zB′)


and L1 pushes forward N (0, I) to ψA′∪S′ · ρB′ , with ρB′ ∼ N (0, I)
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1
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⊥
, zA′′ , zS′′)ψS′′∪B′′(zS′′ , zB′′)

Daniele Bigoni – Measure Transport Framework for Online Nonlinear Filtering and Smoothing



Remove conditional dependencies sequentially

L]1π :

L]1π(z) =
1

c
ψA′′

⊥∪A′′∪S′′(zA′′
⊥
, zA′′ , zS′′)ψS′′∪B′′(zS′′ , zB′′)

There exists T2 = L2 ◦R2 that pushes forward N (0, I) to L]1π, where

L2(z) =


zA′′

⊥
LA2 (zS′′ , zA′′)
LS2 (zS′′)
zB′′

 and R2(z) =


zA′′

⊥
zA′′

RS2 (zS′′ , zB′′)
RB2 (zS′′ , zB′′)


and L2 pushes forward N (0, I) to ψA′′

⊥∪A′′∪S′′ · ρB′′ , with ρB′′ ∼ N (0, I)
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Remove conditional dependencies sequentially

L]2L
]
1π :

L]1π(z) =
1

c
ψA′′

⊥∪A′′∪S′′(zA′′
⊥
, zA′′ , zS′′)ψS′′∪B′′(zS′′ , zB′′)

There exists T2 = L2 ◦R2 that pushes forward N (0, I) to L]1π, where

L2(z) =


zA′′

⊥
LA2 (zS′′ , zA′′)
LS2 (zS′′)
zB′′

 and R2(z) =


zA′′

⊥
zA′′

RS2 (zS′′ , zB′′)
RB2 (zS′′ , zB′′)
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Remove conditional dependencies sequentially
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⊥
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Remove conditional dependencies sequentially

L]2L
]
1π :

L]2L
]
1π(z) =

1

c
ψA′′′

⊥∪A′′′(zA′′′
⊥
, zA′′′)

There exists L3 that pushes forward N (0, I) to L]2L
]
1π, where

L3(z) =

[
zA′′′

⊥
LA3 (zA′′′)

]
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Remove conditional dependencies sequentially

L]3L
]
2L

]
1π : = N (0, I)

L]2L
]
1π(z) =

1

c
ψA′′′

⊥∪A′′′(zA′′′
⊥
, zA′′′)

There exists L3 that pushes forward N (0, I) to L]2L
]
1π, where

L3(z) =

[
zA′′′

⊥
LA3 (zA′′′)

]
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Stochastic volatility
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• Latent log-volatilities modeled with an AR(1) process for t = 1, . . . , N

Xt+1 = µ+ φ(Xt − µ) + ηt , ηt ∼ N (0, 1) , X1 ∼ N
(
0, 1/

(
1− φ2

))
µ ∼ N (0, 1) , φ = 2

exp(φ?)

1 + exp(φ?)
− 1 , φ? ∼ N (3, 1) .

• Observe the mean return for holding the asset at time t

Yt = εt exp(Xt/2) , εt ∼ N (0, 1)

• We want to characterize π ∼ µ, φ,X1:N |Y1:N
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time
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2 Smoothing and filtering marginals
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Smoothing
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State-space model with hyperparameters

Zk+1 = G(Zk,wk,Θ) , wk ∼ νwk
(Θ) , k ∈ Λ = 0, . . . , n

Yk = H(Zk,vk,Θ) , vk ∼ νvk(Θ) , k ∈ Ξ ⊂ Λ

Z0 ∼ ν0(Θ)

Full Bayesian solution

π (Θ,ZΛ|yΞ) ∝ L (yΞ|Θ,ZΛ)π (Θ,ZΛ)

L (yΞ|Θ,ZΛ) =
∏
k∈Ξ

L (yk|Θ,Zk)

π (Θ,ZΛ) = π (Θ)π (Z0|Θ)
∏
k∈Λ

π (Zk|Zk−1,Θ)
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Stochastic volatility

Step-by-step 6–dimensional example
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Stochastic volatility

On-line 102–dimensional example
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Filtering marginals of the hyperparameter µ

|Y0 : t
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Key contributions

Robust on-line algorithm for nonlinear and non-Gaussian
filtering, smoothing and joint parameter/state estimation

via deterministic couplings and optimization.

Ongoing works

• Rao-blackwellized version for linear dynamics with nonlinear hyperparameters

• Learning of non-Gaussian graphical models

• Adaptive construction of maps

• Low-rank transports (likelihood informed/active subspaces)
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Triangular monotone maps

T> =
{
T : Rd → Rd :

triangular︷ ︸︸ ︷
[T (x)]k = T (k)(x1, . . . , xk) and

monotone︷ ︸︸ ︷
∂xkT

(k) > 0
}
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Triangular monotone maps

T> =
{
T : Rd → Rd :

triangular︷ ︸︸ ︷
[T (x)]k = T (k)(x1, . . . , xk) and

monotone︷ ︸︸ ︷
∂xkT

(k) > 0
}

Integrated squared representation – ε > 0

T (k)(x1:k) = ck(x1:k−1) +

∫ xk

0

(
hk(x1:k−1, t)

)2

+ ε dt
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Triangular monotone maps

T n> =
{
T : Rd → Rd :

triangular︷ ︸︸ ︷
[T (x)]k = T (k)(x1, . . . , xk) and

monotone︷ ︸︸ ︷
∂xkT

(k) > 0
}

Integrated squared representation – ε > 0

T (k)(x1:k) = ck(x1:k−1) +

∫ xk

0

(
hk(x1:k−1, t)

)2

+ ε dt

Constant part

ck(x1:k−1) =
∑

i∈Ik aiΦi(x1:k−1)

3 2 1 0 1 2 3

4

2

0

2

4

Squared part

hk(x1:k−1, t) =
∑

j∈Jk
bjΨj(x1:k−1, t)

6 4 2 0 2 4 6

0

1
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Adaptivity

T ? = arg min
T∈T>

DKL (T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

How to find the best subset T n> ⊂ T>?
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Adaptivity

T ? = arg min
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Eρ
[
log

ρ

T ]π
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Refinement criterion

T ? = arg min
T∈T>

E
[
log

ρ

T ]π̃

]
︸ ︷︷ ︸

J (T )

The first variation ∇J (T [a?0]) 6= 0

There exists ε > 0 such that

J (T [a?0]− ε∇J (T [a?0])) < J (T [a?0])
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Refinement criterion

T ? = arg min
T∈T>

E
[
log

ρ

T ]π̃

]
︸ ︷︷ ︸

J (T )

T ?0 = arg min
T∈T 0

>

J (T )

a?0 = arg min
a∈Rn0

J (T [a])

The first variation ∇J (T [a?0]) 6= 0

There exists ε > 0 such that

J (T [a?0]− ε∇J (T [a?0])) < J (T [a?0])
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Refinement criterion

T ? = arg min
T∈T>

E
[
log

ρ

T ]π̃

]
︸ ︷︷ ︸

J (T )

T ?0 = arg min
T∈T 0

>

J (T )

a?0 = arg min
a∈Rn0

J (T [a])

∇aJ (T [a?0]) = 0

The first variation ∇J (T [a?0]) 6= 0

There exists ε > 0 such that

J (T [a?0]− ε∇J (T [a?0])) < J (T [a?0])
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log
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Use the first variation to enrich the approximation space

∇J (T [a?0]) = (∇xT )−1

(
∇x log

ρ

T [a?0]]π

)

• ∇J (T [a?0]) : Rd → Rd is a map in H ⊃ T>

Projection on T 1
> ⊃ T 0

>

b?1 = arg min
b∈Rn1

‖U [b]−∇J (T [a?0])‖L2
ρ

• No new evaluation of ∇x log π is required

• U [b?1] informs about active variables to be included

• U [b?1] informs about active coefficients to be included
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Controlling the sample average accuracy

T ?k = arg min
T∈T k>

−Eρ
[
log T ]π

]
≈ arg min

T∈T k>

Jq(T )︷ ︸︸ ︷
−
∑

1≤i≤q
log T ]π(xi) =: T ?q,k

Sample average approximation

θ̃q,m ≤ J (T ?k ) ≤ θ̂q′

J̃q,m(T ) =
1

m

m∑
i=1

min
T∈T k

>

Jq(T )

SAA
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T∈T k

>

Jq(T )

SAA

Daniele Bigoni – Measure Transport Framework for Online Nonlinear Filtering and Smoothing



Adaptivity ingredients

• Convergence criterion – Variance diagnostic : V
[
log ρ

T ]π

]
• Refinement criterion – First variation : ∇J (T [a?])

• Stability criterion – Sample average approximation : θ̃q,m ≤ J (T ?k ) ≤ θ̂q′

Enrich

E
n
ri
ch

Prune

Enrich

SAA

Daniele Bigoni – Measure Transport Framework for Online Nonlinear Filtering and Smoothing



The banana distribution – d = 2

Conditionals along coordinate axes

Figure: Target π
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The banana distribution – d = 2

Iteration 1 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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The banana distribution – d = 2

Iteration 2 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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The banana distribution – d = 2

Iteration 3 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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The banana distribution – d = 2
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Stochastic volatility of financial assets – d = 32

• Latent log-volatilities modeled with an AR(1) process for t = 1, . . . , N (N = 30)

Xt+1 = µ+ φ(Xt − µ) + ηt , ηt ∼ N (0, 1) , X1 ∼ N
(
0, 1/

(
1− φ2

))
• Observe the mean return for holding the asset at time t

Yt = εt exp(Xt/2) , εt ∼ N (0, 1)

• We want to characterize π ∼ µ, φ,X1:N |Y1:N
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2 Smoothing and filtering marginals
Filtering
Smoothing
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Stochastic volatility of financial assets – d = 32

Iteration 1 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 2 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 3 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 4 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 5 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 6 – Pullback T ]π
Conditionals along coordinate axes

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Intensity coefficients map

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

∇xT

Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 7 – Pullback T ]π
Conditionals along coordinate axes
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Stochastic volatility of financial assets – d = 32

Iteration 7 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)

Daniele Bigoni – Measure Transport Framework for Online Nonlinear Filtering and Smoothing



Stochastic volatility of financial assets – d = 32

Iteration 9 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 10 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 11 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 12 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 13 – Pullback T ]π
Conditionals along coordinate axes

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Intensity coefficients map

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

∇xT

Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32
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