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Bayesian inference — an example
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Bayesian inference — an example
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N—— e

prior

posterior

Daniele Bigoni — Adaptive measure transports for Bayesian inference




Bayesian inference — an example

0 50 100 150 200
sensor position

likelihood
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Tpos(V]d) o< La(v) mpr (V)
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Decisions under uncertainty

méin / L(v,8)mpos(v|d)dv
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Measure transport — Pullbacks [PB] and Pushforwards [PF]

p

e Distribution v, with density p : RY — Rx
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Measure transport — Pullbacks [PB] and Pushforwards [PF]

p

e Distribution v, with density p : RY — Rx

e Distribution v, with density 7 : RY — R>g
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Measure transport — Pullbacks [PB] and Pushforwards [PF]

p

e Distribution v, with density p : RY — Rx
e Distribution v, with density 7 : RY — R>g
e For T : RY — R? we define

PF Tip=po T HVT™Y

PB Tt =moT|VT|
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Measure transport — Pullbacks [PB] and Pushforwards [PF]

e Distribution v, with density p : RY — Rxg
e Distribution v, with density 7 : R¢ — R>g

e For T : R% — R? we define

‘

PF Tip=poT HVT
i Tip Thr
PB Tt =mwoT|VT|
e We want 7 such that
PF Tﬁp =T
T

PB Tir =p
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Measure transport — Pullbacks [PB] and Pushforwards [PF]

e Distribution v, with density p : R? — R>g
e Distribution v, with density 7 : R? — R>
e For T : R? — R? we define

PF Tip=poT HVT™!

PB T'r =7 oT|VT|
e We want 7" such that

PF For X ~v,, T(X) ~ v,

PB ForY ~v,, T71(Y) ~ v,
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Measure transport — Pullbacks [PB] and Pushforwards [PF]

e Distribution v, with density p : RY — Rx
e Distribution v, with density 7 : RY — R>g
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Measure transport — Pullbacks [PB] and Pushforwards [PF]

e Distribution v, with density p : R? — Rx
e Distribution v, with density 7 : RY — R>g T
e For T : RY — R? we define Tr
PF Tip=po T HVT|
PB Timr =7 oT|VT)| >

e We want T such that p
PF For X ~v,, T(X) ~ v,
PB ForY ~v,, T7'Y) ~v,

TW (21)
Knothe-Rosenblatt rearrangement T(Z)(zl,@)
Vv, v, absolutely continuous there exists a T(x) = :
triangular monotone map s.t. T(dv,) = dv, 7(d) (.961 24)
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Triangular monotone maps

triangular monotone
N

Ta = {T R R [T(x)) = T® (21, ..., 2;) and 0, T® > 0}
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Triangular monotone maps

triangular monotone
-

Ta = {T R R [T(x)) = T® (21, ..., 2;) and 0, T® > o}

Integrated squared representation

Tl )
T(F) (J,'lzk) = Ck(xlzkfl) + / (hk(‘rl:kfl, t) + E) dt
0
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Triangular monotone maps

triangular monotone

Th = {T (R R [T(x)]p = T® (21, ..., zp) and 8, T®) > o}

Integrated squared representation

Tk )
7 ~ [+ f (o) +e) e
0

cr(Trp_1) = ZieIk a;®;(z1.51) hi(z1:6-1,1) = Zjejk b; U;(z1.5—1,1)

1

Constant part — T2
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Knothe-Rosenblatt rearrangement

Vv, v absolutely continuous there exists a
triangular monotone map s.t. T'(dv,) = dv,

How to find the map T € T
such that T;p = 7?7
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Minimize KL-divergence to find optimal map

T* = argmin Dk, (Typ||7) = argminE, [log %}
TETA TETA Thm

Daniele Bigoni — Adaptive measure transports for Bayesian inference



Minimize KL-divergence to find optimal map

T* = argmin Dk, (Typ||7) = argminE, [log %}
TETA TETA Thm

+ Derivative based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from T p < in parallel
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Minimize KL-divergence to find optimal map

T* = argmin Dk, (Typ||7) = argminE, [log %}
TETA TETA Thm

+ Derivative based unconstrained optimization if gradients are available
+ We can explore 7 in parallel
+ We can generate i.i.d. samples from T p < in parallel

— We need to approximate d functions up to d-dimensional!
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Minimize KL-divergence to find optimal map

T* = argmin Dk, (Typ||7) = arg minE, [log %}
TETA TETA Tér

+ Derivative based unconstrained optimization if gradients are available
+ We can explore 7 in parallel
+ We can generate i.i.d. samples from Ty p o< m in parallel

— We need to approximate d functions up to d-dimensional!

Sources of low-dimensional structure

® Smoothness e Conditional independence

e Marginal independence e Low-rank structure
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Convergence criterion

T* = argmin Dxp,(Typ||7) = argminE, [log %}
TETA TETA THm

Optimal 7" € Ta and [7=1 = Dxi(T{p|7) =0

But, optimal T* € T or [7#1 = DKL(Tﬁ*pHﬂ) #0
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Convergence criterion

T* = argmin Dxp,(Typ||7) = argminE, [log %}
TeTA TETA T

Optimal 7" € Ta and [7=1 = Dxi(T{p|7) =0

But, optimal T* € T or [7#1 = DKL(Tﬁ*pHW) #0

It . U
V [log #-] e %DKL(Tjj pl|lr) —— —log [7
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Refinement criterion

T* = argmin Dk, (Typ||7)
TeTAn S>——~——
J(T)
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Refinement criterion

T* = argmin Dgr(Typl|7)
TETA N ———
J(T)

Ty = argmin J(T)
TeTR
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Refinement criterion

T* = argmin Dgr(Typl|7)
TeTpn N—_—~—
J(T)

Ty = argmin J (7))
TeTR

[af; = argmin J (7T'[a])
acR™o0
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Refinement criterion

T* = argmin Dgr(Typl|7)
TETA N ——
J(T)

Ty = argmin J (7))
TeTY

[a;; — argmin J(T'[a))
acR"™0

VaJ (Tlaf]) = 0)
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Refinement criterion

T* = argmin Dgr(Typl|7)
TETA N ——
J(T)

Ty = argmin J (7))
TeTY

[a;; — argmin J(T'[a))
acR"™0

VaJ (Tlaf]) = 0)

T (Tiy1) < I(T)

The first variation V.7 (T'[aj]) # 0
"//Ti xle VI(T) There exists € > 0 such that
J (Tlag] — eV (Tlag])) < J (T'ag))
B(T;;€) H

Daniele Bigoni — Adaptive measure transports for Bayesian inference



Use the first variation to enrich the approximation space

VI (Tlag)) = (V1) (VX i T[a%]ﬂw) ]
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Use the first variation to enrich the approximation space

VI (Tlag)) = (V1) (VX i T[a%]ﬂw) ]

e VJ (T[ag]) : R* - R%is a map in H D Ta
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Use the first variation to enrich the approximation space

v (Tlag]) = (V) (Viclog T[a%]ﬁﬂ> ]

e VJ (T[ag]) : R* - R%is a map in H D Ta

Projection on T > T2

bl = argmin [|[U[b] — VJ (T'[ag))|| ;2
beR™1 ’
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Use the first variation to enrich the approximation space

v (Tlag]) = (V) (Viclog T[a%]ﬁﬂ> ]

e VJ (T[ag]) : R* - R%is a map in H D Ta

Projection on T > T2

bl = argmin [|[U[b] — VJ (T'[ag))|| ;2
beR™1 ’

¢ No new evaluation of V, log 7 is required
e U[bj] informs about active variables to be included

e U[bj] informs about active coefficients to be included
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Controlling the sample average accuracy

Jq(T)

N

Ty = argmin —E, [log Tﬁw} A arg min — Z log T*7(x;) =: T,k
TGTA’c TGTE 1<i<q
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Controlling the sample average accuracy

Jq(T)

N

Ty = argmin —E, [log Tﬁw} A arg min — Z log Tﬁw(xi) =Ty
TGTA’c TGTAk 1<i<q
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Controlling the sample average accuracy

Jq(T)

N

Ty = argmin —E, [log Tﬁw} A arg min — Z log Tﬁw(xi) =Ty
TGTA’c TGTAk 1<i<q

Sample average approximation

éq,m < j(le) < éq’

T (T

)
t —
b To(Tyy) by
1 m

Jq,m(T) = m o Tnel% jq(T)
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Adaptivity ingredients

e Convergence criterion — Variance diagnostic : V [log ﬁ]
¢ Refinement criterion — First variation : V.7 (T[a*])

e Stability criterion — Sample average approximation : 6, ,, < J(T}) < 6,

TA

Enrich
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The banana distribution — d = 2

Conditionals along coordinate axes

Figure: Target 7
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The banana distribution — d = 2

Iteration 1 — Pullback T%x

Conditionals along coordinate axes

Intensity coefficients r

X

[Reminder: Tt ~ p, where p is the density of N(O,I)]
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The banana distribution — d = 2

Iteration 2 — Pullback T%r

Conditionals along coordinate axes

In te7 ity coefficients

X

[Reminder: Tt ~ p, where p is the density of N(O,I)]
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The banana distribution — d = 2

Iteration 3 — Pullback T%r

Conditionals along coordinate axes
Intensity coefficients map

VT

[Reminder: Tt ~ p, where p is the density of N(O,I)]
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The banana distribution — d = 2
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Stochastic volatility of financial assets — d = 32

e Latent log-volatilities modeled with an AR(1) process fort =1,..., N (N = 30)
Xepr=p+d(Xy —p)+ne, ne~N(©0,1), X1~N(0,1/(1-¢%)
e Observe the mean return for holding the asset at time ¢
Y; = erexp(Xy/2), & ~N(0,1)

e We want to characterize m ~ p, ¢, X1.n|Y1.n

Smoothing and filtering marginals

— Filtering
—  Smoothing

time
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Stochastic volatility of financial assets — d = 32

Iteration 1 — Pullback T%x

Conditionals along coordinate axes

E VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 2 — Pullback T%r

Conditionals along coordinate axes

@ VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 3 — Pullback T%r

Conditionals along coordinate axes

@ Vil

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 4 — Pullback T¢x

Conditionals along coordinate axes

@ VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 5 — Pullback T%x

Conditionals along coordinate axes

@ VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 6 — Pullback T%r

Conditionals along coordinate axes

Vol

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 7 — Pullback T%x

Conditionals along coordinate axes

EEEEEE
=
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[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 7 — Pullback T%x

Conditionals along coordinate axes

VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 9 — Pullback T%x

Conditionals along coordinate axes
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[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 10 — Pullback T¥r

Conditionals along coordinate axes

A
ole]e]/\
olejejee|o]/|

olefe/e]e]e]e]/ VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 11 — Pullback T¥r

Conditionals along coordinate axes

VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 12 — Pullback T¥r

Conditionals along coordinate axes

VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32

Iteration 13 — Pullback T¥r

Conditionals along coordinate axes

VT

[Reminder: Tt ~ p, where p is the density of /\/'(O,I)]
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Stochastic volatility of financial assets — d = 32
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Key contributions

Robust adaptive algorithm for characterizing probability measures
via deterministic couplings and optimization,
exploiting smoothness and marginal independence

Daniele Bigoni — dabi@mit.edu
Contacts: Alessio Spantini — spantini@mit.edu
Youssef Marzouk — ymarz@mit.edu
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