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Bayesian inference – an oversimplified example
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πpos(v|d)︸ ︷︷ ︸
posterior

∝
likelihood︷ ︸︸ ︷
Ld(v)πpr(v)︸ ︷︷ ︸

prior

= πε(d−G(v))πpr(v)

Decisions under uncertainty

min
δ

∫
L(v, δ)πpos(v|d)dv
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Goal: characterize πpos(v|d), i.e.

• construct approximations∫
f(v)πpos(v|d)dv ≈

∫
f(v)π̃pos(v|d)dv ≈

n∑
i=1

f(v(i))w(i)

• control the error between πpos(v|d) and π̃pos(v|d)

Difficulties:

• v ∈ Rd where d� 1

• The model G(v) is non-linear

• Evaluation of the model G(v) is expensive
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Outline

Transport maps

Adaptivity
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Transport maps – Pullbacks [PB] and Pushforwards [PF]

• Distribution νρ with density ρ : Rd → R≥0

• Distribution νπ with density π : Rd → R≥0
• For T : Rd → Rd we define

PF T]ρ = ρ ◦ T−1|∇T−1|
PB T ]π = π ◦ T |∇T |

• We want T such that

PF For X ∼ νρ, T (X) ∼ νπ
PB For Y ∼ νπ, T−1(Y ) ∼ νρ

Knothe-Rosenblatt rearrangement

∀ νρ,νπ Lebesgue absolutely continuous
∃ a triangular monotone map s.t. T]ρ = π
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Transport maps – Pullbacks [PB] and Pushforwards [PF]

• Distribution νρ with density ρ : Rd → R≥0
• Distribution νπ with density π : Rd → R≥0
• For T : Rd → Rd we define

PF T]ρ = ρ ◦ T−1|∇T−1|
PB T ]π = π ◦ T |∇T |

• We want T such that

PF For X ∼ νρ, T (X) ∼ νπ
PB For Y ∼ νπ, T−1(Y ) ∼ νρ

Knothe-Rosenblatt rearrangement

∀ νρ,νπ Lebesgue absolutely continuous
∃ a triangular monotone map s.t. T]ρ = π

T

T (x) =


T (1)(x1)
T (2)(x1, x2)

...
T (d)(x1, . . . , xd)
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Triangular monotone maps

T> =
{
T : Rd → Rd :

triangular︷ ︸︸ ︷
[T (x)]k = T (k)(x1, . . . , xk) and

monotone︷ ︸︸ ︷
∂xkT

(k) > 0
}
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Triangular monotone maps

T> =
{
T : Rd → Rd :

triangular︷ ︸︸ ︷
[T (x)]k = T (k)(x1, . . . , xk) and

monotone︷ ︸︸ ︷
∂xkT

(k) > 0
}

Integrated squared representation – ε > 0

T (k)(x1:k) = ck(x1:k−1) +

∫ xk

0

(
hk(x1:k−1, t)

)2
+ ε dt
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Triangular monotone maps

T n> =
{
T : Rd → Rd :

triangular︷ ︸︸ ︷
[T (x)]k = T (k)(x1, . . . , xk) and

monotone︷ ︸︸ ︷
∂xkT

(k) > 0
}

Integrated squared representation – ε > 0

T (k)(x1:k) = ck(x1:k−1) +

∫ xk

0

(
hk(x1:k−1, t)

)2
+ ε dt

Constant part

ck(x1:k−1) =
∑

i∈Ik aiΦi(x1:k−1)
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Knothe-Rosenblatt rearrangement

∀ νρ,νπ Lebesgue absolutely continuous
∃ a triangular monotone map s.t. T]ρ = π

How to find the map T ∈ T>
such that T]ρ = π?
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Minimize KL-divergence to find optimal map

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel
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Minimize KL-divergence to find optimal map

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel

We are working on T n> ⊂ T>, so
how can we evaluate the quality of the approximation?
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Convergence criterion – Variance diagnostic

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π̃

]
+ log

∫
π̃

Optimal T ? ∈ T> and
∫
π̃ = 1 ⇒ Eρ

[
log ρ

(T ?)]π̃

]
= 0

But, optimal T̃ ? ∈ T n> or
∫
π̃ 6= 1 ⇒ Eρ

[
log ρ

(T̃ ?)
]
π̃

]
6= 0

DKL(T]νρ‖νπ) ≈ 1
2V
[
log ρ

T ]π̃

]
as T → T ?

Daniele Bigoni – Scalable inference with Transport Maps



Convergence criterion – Variance diagnostic

T ? = arg min
T∈T>

DKL(T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π̃

]
+ log

∫
π̃

Optimal T ? ∈ T> and
∫
π̃ = 1 ⇒ Eρ

[
log ρ

(T ?)]π̃

]
= 0

But, optimal T̃ ? ∈ T n> or
∫
π̃ 6= 1 ⇒ Eρ

[
log ρ

(T̃ ?)
]
π̃

]
6= 0

DKL(T]νρ‖νπ) ≈ 1
2V
[
log ρ

T ]π̃

]
as T → T ?

Daniele Bigoni – Scalable inference with Transport Maps



Pros & cons

T ? = arg min
T∈T>

DKL(T]ρ‖π) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel

We can assess convergence!

The map can be used as a preconditioner for other unbiased methods

We need to approximate d functions of up to d variables!
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Pros & cons

T ? = arg min
T∈T>

DKL(T]ρ‖π) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

Gradient-based unconstrained optimization if gradients are available

We can explore π in parallel

We can generate i.i.d. samples from T ?] ρ ∝ π in parallel

We can assess convergence!

The map can be used as a preconditioner for other unbiased methods

We need to approximate d functions of up to d variables!

Sources of low-dimensional structure

• Smoothness

• Marginal independence

• Conditional independence

• Low-rank structure
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Adaptivity

T ? = arg min
T∈T>

DKL (T]νρ‖νπ) = arg min
T∈T>

Eρ
[
log

ρ

T ]π

]

How to find the best subset T n> ⊂ T>?
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Refinement criterion

T ? = arg min
T∈T>

E
[
log

ρ

T ]π̃

]
︸ ︷︷ ︸

J (T )

The first variation ∇J (T [a?0]) 6= 0

There exists ε > 0 such that

J (T [a?0]− ε∇J (T [a?0])) < J (T [a?0])
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Refinement criterion
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J (T )

T ?k = arg min
T∈T k>

J (T )

a?k = arg min
a∈Rnk

J (T [a])
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The first variation ∇J (T [a?0]) 6= 0

There exists ε > 0 such that

J (T [a?0]− ε∇J (T [a?0])) < J (T [a?0])
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Use the first variation to enrich the approximation space

∇J (T [a?k]) = (∇xT )−1
(
∇x log

ρ

T [a?k]
]π

)

• ∇J (T [a?k]) : Rd → Rd is a map in H ⊃ T>

Projection on T k+1
> ⊃ T k>

b?k+1 = arg min
b∈Rnk+1

‖U [b]−∇J (T [a?k])‖L2
ρ

• No new evaluation of ∇x log π is required

• U [b?k+1] informs about active variables to be included

• U [b?k+1] informs about active coefficients to be included
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Controlling the sample average accuracy

T ?k = arg min
T∈T k>

−Eρ
[
log T ]π

]
≈ arg min

T∈T k>

Jq(T )︷ ︸︸ ︷
−
∑

1≤i≤q
log T ]π(xi) wi =: T ?q,k

Sample average approximation

θ̃q,m ≤ J (T ?k ) ≤ θ̂q′

J̃q,m(T ) =
1

m

m∑
i=1

min
T∈T k

>

Jq(T )

SAA
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Adaptivity ingredients

• Convergence criterion – Variance diagnostic : V
[
log ρ

T ]π

]
• Refinement criterion – First variation : ∇J (T [a?])

• Stability criterion – Sample average approximation : θ̃q,m ≤ J (T ?k ) ≤ θ̂q′

Enrich

E
n
ri
ch

Prune

Enrich

SAA
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Stochastic volatility of financial assets – d = 32

• Latent log-volatilities modeled with an AR(1) process for t = 1, . . . , N (N = 30)

Xt+1 = µ+ φ(Xt − µ) + ηt , ηt ∼ N (0, 1) , X1 ∼ N
(
0, 1/

(
1− φ2

))
• Observe the mean return for holding the asset at time t

Yt = εt exp(Xt/2) , εt ∼ N (0, 1)

• We want to characterize π ∼ µ, φ,X1:N |Y1:N
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Stochastic volatility of financial assets – d = 32

Iteration 1 – Pullback T ]π
Conditionals along coordinate axes
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∇xT

Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 2 – Pullback T ]π
Conditionals along coordinate axes

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Intensity coefficients map

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

∇xT

Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 3 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 4 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 5 – Pullback T ]π
Conditionals along coordinate axes

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Intensity coefficients map

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

∇xT

Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 6 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 7 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 7 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 9 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 10 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 11 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 12 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

Iteration 13 – Pullback T ]π
Conditionals along coordinate axes
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Reminder: T ]π ≈ ρ, where ρ is the density of N (0, I)
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Stochastic volatility of financial assets – d = 32

0 100 200 300 400 500 600 700 800

Number of coefficients

10-1

100

101

V
[l
og
ρ
/T

] π
]

Variance diagnostic

Daniele Bigoni – Scalable inference with Transport Maps



Key contributions

Algorithms for characterizing probability measures
via deterministic couplings and optimization,

exploiting smoothness and marginal independence

Contact: Daniele Bigoni – dabi@mit.edu

Software: https://transportmaps.mit.edu
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