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Bayesian inference — an oversimplified example
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velocity field
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Bayesian inference — an oversimplified example
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Bayesian inference — an oversimplified example
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sensor position

likelihood
— =
Tpos (V]d) & La (V) Tpr (V)
——

posterior

Decisions under uncertainty

méin / L(v, 0)Tpos(v|d)dv
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Goal: characterize m,s(v|d), i.e.

® construct approximations
/ FO) oo (v]d)dv = / F( ) pon(vId)dv & 3 (v )
=1
e control the error between ,,s(v|d) and 7pes(V|d)

Difficulties:
ov c RY where d > 1

® The model G(v) is non-linear

e Evaluation of the model G(v) is expensive
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Outline

Transport maps
Layers of lazy maps

Results
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

p

® Distribution v, with density p : RY — Rx
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

p

® Distribution v, with density p : RY — Rx

® Distribution v, with density 7 : RY — R>g
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

p

® Distribution v, with density p : RY — Rx
® Distribution v, with density 7 : RY — R>g
® For T : R4 — R? we define

PF Tip=po T HVT™Y

PB Tt =moT|VT|
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

p
® Distribution v, with density p : R — Rx

® Distribution v, with density 7 : R¢ — R>g

® For T : RY — R? we define

PF Tip=poT HVT™Y
PB Tir =7 oT|VT)|
® We want 7" such that
PF Tiyp=m
PB Tir=p T
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

® Distribution v, with density p : R? — R>g
® Distribution v, with density 7 : R? — R>
® For T : R? — R? we define

PF Tip=poT HVT™!

PB T'r =7 oT|VT|
® We want 7" such that

PF For X ~v,, T(X) ~ v,

PB ForY ~v,, T71(Y) ~ v,
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

® Distribution v, with density p : RY — Rx
® Distribution v, with density 7 : RY — R>g
® For T : R4 — R? we define

PF Tip=poT HVT™Y

PB Tt =moT|VT|
® We want T such that

PF For X ~v,, T(X) ~ v,

PB ForY ~v,, T7}Y) ~ v,
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Transport maps — Pullbacks [PB] and Pushforwards [PF]

® Distribution v, with density p : R? — Rx

® Distribution v, with density 7 : RY — R>g

® For T : RY — R? we define T
PF Tip=po T HVT|
PB Timr =7 oT|VT)| >

® We want T such that p
PF For X ~v,, T(X) ~ v,
PB ForY ~v,, T7'Y) ~ v,

Knothe-Rosenblatt rearrangement T (21, 29)

V v,, v, Lebesgue absolutely continuous
3 a triangular monotone map s.t. Tjp =7 T (2,
ye
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Triangular monotone maps

triangular monotone

T. = {T ‘RY 5 RY: [T(x)], = T® (21, ..., az) and 9y, T® > 0}
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Triangular monotone maps

triangular monotone
o

T. = {T ‘RY 5 RY: [T(x)], = T® (21, ..., az) and 9y, T® > o}

Integrated squared representation — e > 0

T 2
T® (214) = cp(Tr6-1) + / (hk(xlzkflvt» tedt
0

Daniele Bigoni — Layers of lazy maps for large-scale inference



Triangular monotone maps

triangular monotone

~ —_—
N — {T RT - R [T(x))p = T® (21,...,2) and 9, T > 0}

Integrated squared representation — e > 0

Tk

(hk<xlzk—17t) )2 +edt

T Ger) = +f
0

ck(T1k-1) = Dier, aiPi(@16-1) hi(@rk—1,1) = D e 7, Bi¥i (@101, 1)

1

a
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Knothe-Rosenblatt rearrangement

V v,, v, Lebesgue absolutely continuous
3 a triangular monotone map s.t. Tjp =7

How to find the map T € 7~
such that Tip = 7?7
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Minimize KL-divergence to find optimal map

T = argmin D1, (Tyvy||lvr) = argminE, [log %]
TeT> TeT Tt
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Minimize KL-divergence to find optimal map

T = argmin D1, (Tyvy||lvr) = argminE, [log %]
TeT> TeT Tt

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from fﬁu,, = v, in parallel
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Minimize KL-divergence to find optimal map

T = argmin D1, (Tyvy||lvr) = argminE, [log %]
TeT> TeT Tt

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from fﬁu,, = v, in parallel

We are working on 7' C 75, so
how can we evaluate the quality of the approximation?
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Convergence criterion — Variance diagnostic

~

T = arg min Dy, (Tyv,||vx) = argminE, [log %} + log/7~r
TeTS TeTS T ™

Optimalfeﬁandf%zl = Ep[log L ]:O

But, optimal T € Tror [T#1 = E, [log (T*p)“] #0
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Convergence criterion — Variance diagnostic

~

T = arg min Dy, (Tyv,||vx) = argminE, [log %} + log/7~r
TeTS TeTS T ™

Optimalfeﬁandf%zl = Ep[log L ]:O

But, optimal T € Tror [T#1 = E, [log (T*p)‘“] #0

DxL(Tyvpllvr) ~ 3V[log7k=] as T — T ]
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Pros & cons

T = argmin D1 (Typ||7) = argminE, [log %}
TET> TeTS Thr

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel
+ We can generate i.i.d. samples from fﬁup = v, in parallel

+ We can assess convergence!
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Pros & cons

T = argmin D1 (Typ||7) = argminE, [log %}
TET> TeTS Thr

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel
+ We can generate i.i.d. samples from fﬁup = v, in parallel

+ We can assess convergence!

ﬁp is a biased approximation of 7.
How to reduce such bias?
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Use T as a preconditioner for ... Importance Sampling

_ m(x) — o T(x Tén(x) x)dx
[ s = [ 160 2 Tptiax = [ 107607 7ot
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Use T as a preconditioner for ... Importance Sampling

m(X) & Odx — o Tlx Tér(x)
F T = [ 10760 73

[ 169max = [ 160 p(x)dx

T T
If T'7rXp then V[ o) } ~0 and

will be an accurate estimator of [ f(x)m(x)dx
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Use 7 as a preconditioner for ... Markov Chain Monte Carlo

@ Generate the Markov chain {x;} with invariant distribution T#x
(use your favorite MCMC method/proposals)

@ The Markov chain {T'(x;)} has invariant distribution 7
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Use 7 as a preconditioner for ... Markov Chain Monte Carlo

@ Generate the Markov chain {x;} with invariant distribution T#x
(use your favorite MCMC method/proposals)

@ The Markov chain {T'(x;)} has invariant distribution 7

If T X p then p isa good proposal for Th7.
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Use T as a preconditioner for ... Transport Maps!

@ Solve T' = arg mingc7n E, [1og ﬁ]

_p
TiTin

@ Solve T = arg minTeT; E, [log

~ o~

(ToT)yp=m
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Pros & cons

T = argmin D1 (Typ||7) = argminE, [log %}
TET> TeTS Thr

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from fﬁup = v, in parallel

+ We can assess convergence!

+ The map can be used as a preconditioner
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Pros & cons

T = argmin Dy (Typ||7) = argminE, [log %}
TET> TET> Thr

+ Gradient-based unconstrained optimization if gradients are available
+ We can explore 7 in parallel

+ We can generate i.i.d. samples from ﬂup = v, in parallel

+ We can assess convergence!

+ The map can be used as a preconditioner

— We need to approximate d functions of up to d variables!

T(l)(l'l)

T(Q) T1,T2
T(x) = ( )

T(d) (3;‘1, e ,l‘d)
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Exploit source of low-dimensional structure

@ Smoothness and marginal independence
® Ongoing work...
® Conditional independence

® Variational filtering/smoothing and parameter estimation
[Spantini, B, Marzouk 2018; Houssineau, Jasra, Singh 2018]
® Ensamble filtering and smoothing
[Spantini, Baptista, Marzouk 2019]

© Multilevel /multifidelity structure
[Parno, Moselhy, Marzouk 2018; Peherstorfer, Marzouk 2019]

@ Low-rank structure
[B, Zahm, Spantini, Marzouk 2019]
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Layers of lazy maps

Incrementally construct improving maps
by working on residual distributions.
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What is a lazy map?

Few (r < d) complex components and many “lazy” identity components:

Maps of this type are effective if p and 7 agree along d — r coordinates.
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Assume there exists a rotation matrix Q such that

/77 o Q(gl:rv xr+1:d) dEl:r = /p(gl:m wr+1:d) dél:m

Then there exist a lazy map 1" € 7, such that

Typ = Qﬁﬂ
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Finding a good rotation Q

For any distribution v, with finite second moment, let

(Hy),; = /&-t(w) Oje(x) n(x) de , v = log(m/p).
If rank(H,)) = r and v, = N(0,I), then

there exist a rotation Q and a lazy map T € 7,
such that Typ = Qir
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Certified approximation 7* and optimal rotation Q
[zahm 2018, Bigoni 2019]

Let the columns of U € R%*" be the eigenvectors corresponding to
the largest r eigenvalues {\;}7_; of H,, and let

m(z) = f(U'z)p()
for f given by the conditional expectation
f(z) ::E{W(X)/p(X)’UTX:z} , X~p.
Then,

DkL (71'”71'*) < )‘7’+1 + ...+ A and Q= [U’UJ_]
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In practical problems...

(H,), = / de() Ope(@)n(@) dw,  t = log(r/p).

® H,, will need to be approximated using some quadrature
® H,, will only be approximately low-rank

® The spectrum of H,, will depend on the sampling distribution v,
(the optimal distribution would be v, itself)
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Construction of one lazy map

1. procedure LAZYMAP(7, p, €, "max)

2 Compute H = [(Vlog 2)(Vlog %)po

3 Solve the eigenvalue problem Hu; = A\ju;

4: Let 7 = rmax Amin{r < d : % Yooy Ni <€}
5: Assemble Q = [U|U_].

6: Find T solution to minycr. P (p|| T Q)
7 return Qo T
8: end procedure
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Greedy construction of lazy maps

1: procedure LAYERSOFLAZYMAPS(7, p, €, 7, €max)
2 Set mg=mand £ =0

3 while ¢ < lray and & Tr(H,) > ¢ do

4 L+—0+1

5: Compute Ty = LazyMAP(7s—1, p, 0, 1)

6 Update €, =Tp_1 0Ty

7 Compute mp = (Ty)fr

8 Compute Hy = [(Vlog 7)(Vlog %)po

9 end while
10: return ¥y =Tj0---01y

11: end procedure
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Greedy construction of lazy maps

1: procedure LAYERSOFLAZYMAPS(7, p, €, 7, €max)
2 Set mg=mand £ =0

3 while ¢ < lray and & Tr(H,) > ¢ do

4 L+—0+1

5: Compute Ty = LazyMAP(7s—1, p, 0, 1)

6 Update T, =%p_1 0Ty

7 Compute mp = (Ty)fr

8 Compute Hy = [(Vlog 7)(Vlog %)po

9 end while
10: return ¥y =Tj0---01y

11: end procedure

[ T progressively “Gaussianizes” . ]
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Composition of layers of lazy transport maps
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In practice...
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Log-Gaussian Cox process with sparse observations (d = 64?)

Observables: Y := (V;)3%,, Y; ~ Poisson(A;/d)
Latent field: (A;)%_, ~ log N (u, cov(z,z'))
cov(z,z') = o2 exp (— lzi — 2]l /(646))

Posterior: m(A|Y =y*) x (Y = y*|A)7(A)

Statistical model

|ooOOOCm)OO|
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Log-Gaussian Cox process with sparse observations (d = 64?)

\ooOOOEJOO‘

Field A* and observations y*
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Log-Gaussian Cox process with sparse observations (d = 64?)

‘OOOOOéOOI

Field A* and observations y* Realizations of A ~ WAIy*(A)
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Log-Gaussian Cox process with sparse observations (d = 64?)

103 —e— Lazy rank: 1 103+ —e— Eig(Ho)

Lazy rank: 3 Eig(H1)

—e— Llazyrank: 5 —e— Eig(H2)

R 102 101 A —e— Eig(Hs)

T —— Eig(Ha)
w10t 1014 e

100 10—3 4
0 1 2 3 4 5 6 7 0 10 20 30
Lazy iteration £ Eigenvalues

Metropolis-Hastings with independent proposals of T

A/R ESS (worst)
72.6% 26.6%
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Elliptic problem with unknown coefficients (d = 2601)

—V - (k(x,w)Vu(x,w)) =0 in T'xQ

T3 u(x,w) = 0 on x;=0
Eg u(x,w) =1 on x; =1
= ou

—22(x) =0 on x2 € 10,1
<)
w

k(x,w) = exp (g(x,w)), glx,w)~N (O,Cg(x,x'))

Cy(x,x") = exp (—[x — x'|)

Daniele Bigoni — Layers of lazy maps for large-scale inference



Elliptic problem with unknown coefficients (d = 2601)

—V - (k(x,w)Vu(x,w)) =0 in T'xQ

T3 u(x,w) = 0 on x;=0
Eg u(x,w) =1 on x; =1
]
= ou

—22(x) =0 on x2 € 10,1
<]
w

k(x,w) = exp (g(x,w)), glx,w)~N (O,Cg(x,x'))
Cy(x,x") = exp (—[x — x'|)

Bayesian inverse problem

likelihood
—
Tpos(#]d) o< La(k) Tpr (i) = me(d — G(k)) e ()
posterior prior

\.

J
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Elliptic problem with unknown coefficients (d = 2601)

Synthetic field log k*(x)

Synthetic solution G(k*)
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Elliptic problem with unknown coefficients (d = 2601)
2

=
0
-1
-2
-3

Realizations of log k
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Elliptic problem with unknown coefficients (d = 2601)

1
1051 —e— STr(Hy)

ESS

A/R worst best avg.
T 04% ~0% ~0% ~0%
Trr 28% 02% 1.6% 1.5%

—— %V[lOQP/T’rI]

104_

103 4

102 4

1]
10 Metropolis-Hastings with pCN

proposal (8 = 0.5)

10°

Lazy iteration £
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Estimation of the Young’'s modulus of a cantilever beam (d = 5)

g =
T
sm [ &[S () - fuw)] =L,
20 L (B@)ILe() = rAsg (p(z) — Lu(=))
2
2

190 | 213 | 195 | 208 | 200

Displacement [m]
o

0 2 4 6 8 10
Position [m]
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Estimation of the Young’'s modulus of a cantilever beam (d = 5)

215

210+

205+

-

200

1954
190 ====

0 2 4 6 8 10
Position [m]

Young modulus [GPa]
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Estimation of the Young’'s modulus of a cantilever beam (d = 5)

1084 —o— 1Tr(Hy)
—— 1Vllogp/T*n] ESS

106_

A/R worst best avg.
104 68.3% 7.0% 38.7% 201%
102_

Metropolis-Hastings with

100_

indipendent proposals

Lazy iteration £
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Key contributions

Algorithms for characterizing probability measures
via layers of low-dimensional deterministic couplings

Contact: Daniele Bigoni — dabi@mit.edu

Software: https://transportmaps.mit.edu

Bigoni et al. “Greedy inference with layers of lazy maps” (arXiv)

Zahm et al. “Certified dimension reduction in nonlinear Bayesian inverse problems” (arXiv)
Bigoni et al. “On the computation of monotone transports” (preprint)

Spantini et al. “Inference via low-dimensional couplings” (JMLR)

Marzouk et al. “Sampling via measure transport: an introduction” (Springer)

Parno et al. “Transport map accelerated Markov chain Monte Carlo” (JUQ)

El Moselhy et al. “Bayesian inference with optimal maps” (JCP)
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